Back to Articles



§ 001. GNSS data quick decoding & analysis w/ help of WAY service

KernelSAT
2023-Aug-30


Table of contents:



Intro


Sometimes it is needed to get quick statistic overview of GNSS data file before it will be somehow processed. What format / protocol is it? What messages are inside? How many messages of good CRC? What observations are available - GNSSs, SVs, Signals? What are Max / Mean SNR values? What is the average position (just to be ensure the file was collected in right place) etc. So many similar questions may be raised to whom is facing w/ GNSS data analysis and processing.

The article describes how KernelSAT service WAY may help you w/ quick GNSS data pre-analysis.



About WAY


The WAY online utility automatically detects known / supported formats and protocols in uploaded file and gives statistic about detected messages and compact information about primary data parameters.

As for today (2023-Aug-28), WAY supports the following formats (completely and/or partially):



Please reffer to WAY Home Page for up-to-date status and additional information / details.





Example 1. Compact RINEX from BKG


Let's demonstrate WAY features on concrete examples. For instance, there is some Compact RINEX file we'd like to check and analyze. Perfect! Let's start. As for file, let's use one concrete from BKG:

https://igs.bkg.bund.de/browseFiles



Where this station is located? How many measurements are inside in fact? Is there QZSS or IRNSS measurements? All of these questions may be easily answered by WAY.

Once the test file is downloaded from BKG server (and unzipped), let's open WAY uploading page

First one should select the file to be examined. WAY supports Compact RINEX format (both version 1 and version 3) thus no need to run RNXCMP utility in advance. Just point to UNBD00CAN_R_20231990000_01D_30S_MO.rnx file which has just been saved and unzipped.


In most of the cases, you may keep DECODER combo-box by default (AUTO). It means that WAY will detect the format on its own. However, in some specific cases when the file includes data of several GNSS formats - it makes sense to specify concrete one. For instance, there could be a file w/ NMEA and UBLOX binary (or Septentrio SBF) data logged together.

Final step - verification code is entered and one may press UPLOAD button. The file will be uploaded to the server and started to be processed. Processing time depends on file size, GNSS data format, epoch rate etc. If file is huge - please wait a little bit, it may take some time.



General statistic section inform us that we have 24h raw data collected on Septentrio POLARX5S receiver w/ FW 5.5.0 onboard. Data rate is 30 sec. GNSS measurements are presented in RINEX 4 format w/ applied Compact RINEX compression (Hatanaka compressed).

General Info

Parameter Value
File name UNBD00CAN_R_20231990000_01D_30S_MO.crx
File Size 10.527 MB (11037941 bytes)
Input decoder AUTO
Used decoder RINEX
RINEX version
4.0
Hatanaka Compressed (CRX)
Epochs
Rate 30 sec
Total 2880
Time issues 0 (0.000% )
Missed 0 (0.000% )
Time start 2023.07.18 00:00:0.00
Time Stop 2023.07.18 23:59:30.00
Receiver SEPT POLARX5S
Receiver FW 5.5.0
Receiver ID 3055097


Antenna coordinates provided in RINEX header are the following:


Average Coordinates

Average Coordinates over all positions withing the file.

Average Coordinates
Lat, deg 45.950126549681
Lon, deg -66.6414659968
Alt, m 23.115608
X, m 1761305.900000
Y, m -4078238.570000
Z, m 4561411.350000



WAY shows us the position on interactive Google Maps what is quite convinient - we may check in details the location and its surroundings from point of GNSS obstacles and shadings.



Next, WAY process the whole file, all the epochs, collect measurements of all GNSS, satellites and siganls and forms statistic of number of tracked SVs per each GNSS.


Min / Mean / Max SVs Tracked

Min, mean and max number of tracked SVs per GNSS.

SVs Tracked
GNSS Min Mean Max
GPS 9 10.98 14
GLONASS 7 9.09 11
SBAS 5 5.88 6
GALILEO 5 8.94 13
BEIDOU 6 10.78 16



Here WAY presents details statistic of max & mean SNR per each GNSS and Signal detected over whole file. It also gives an idea about concrete signals provided in the file.


Max / Mean SNR

Max and mean SNR over all SVs of concrete GNSS and signal.

GNSS Signal Max SNR, dbHz Mean SNR, dbHz
GPS L1CA 52.25 44.12
GPS L1C(P) 50.01 43.90
GPS L1P 54.12 33.34
GPS L2C(L) 51.89 41.29
GPS L2P 54.12 33.34
GPS L5Q 56.38 46.15
GLONASS L1CA 53.23 45.38
GLONASS L1P 53.48 44.90
GLONASS L2CA 52.29 43.37
GLONASS L2P 52.92 43.62
SBAS L1CA 43.15 38.48
SBAS L5I 37.95 35.74
GALILEO E1C 51.90 42.51
GALILEO E5A(Q) 53.51 43.81
GALILEO E6C 58.14 46.36
GALILEO E5B(Q) 54.67 44.39
GALILEO E5(A+B)(Q) 56.97 47.09
BEIDOU B1C(P) 51.12 43.68
BEIDOU B1I 52.02 44.46
BEIDOU B2a(P) 53.39 44.43
BEIDOU B3I 55.77 46.02
BEIDOU B2I 53.59 43.42
BEIDOU B2b(D) 52.98 44.90


In the next table, WAY provides information about SNR (and/or Code) measurements counters. It allows to get idea what concrete satellites were tracked, what signals were tracked and how many such observables are available per each GNSS, satellite and signal.


Measurements counter (SNR)

Total number of SNR measurements for each GNSS / satellite per Signal.


GPS

Total number of SNR measurements for each satellite per Signal.

SV
[1C]
(L1CA)
[1L]
(L1C(P))
[1W]
(L1P)
[2L]
(L2C(L))
[2W]
(L2P)
[5Q]
(L5Q)
G01 1056 1053 1047 1053 1058
G02 1107 1103 1103
G03 1123 1118 1109 1118 1130
G04 1112 1110 1106 1105 1106 1116
G05 851 850 846 850
G06 860 859 859 859 860
G07 1102 1098 1061 1098
G08 956 949 933 949 976
G09 1130 1123 1113 1123 1134
G10 1065 1062 1041 1062 1066
G11 864 863 863 864 863 865
G12 1126 1118 1100 1118
G13 1052 1040 1040
G14 999 997 993 992 993 1008
G15 812 811 806 811
G16 827 819 819
G17 876 875 873 875
G18 1093 1089 1085 1092 1085 1099
G19 838 836 836
G20 848 847 847
G21 1115 1108 1108
G22 847 846 846
G23 975 972 962 968 962 985
G24 1055 1047 1043 1047 1058
G25 1104 1094 1086 1094 1109
G26 856 808 805 808 883
G27 1043 1040 1033 1040 1045
G28 866 866 865 865 865 867
G29 1126 1119 1096 1119
G30 1114 1107 1095 1107 1118
G31 858 857 851 857
G32 859 857 857 857 861

GLONASS

Total number of SNR measurements for each satellite per Signal.

SV
[1C]
(L1CA)
[1P]
(L1P)
[2C]
(L2CA)
[2P]
(L2P)
R01 1008 1006 994 985
R02 993 993 975 974
R03 981 976 969 963
R04 1175 1180 1168 1166
R05 1221 1221 1198 1189
R06 1219 1217
R07 1110 1107 1104 1101
R08 1016 1016 1017 1013
R09 1076 1071 1068 1051
R10 982 978
R11 974 973 951 948
R12 984 985 977 975
R13 965 959 945 962
R14 1222 1218 1215 1214
R15 1248 1244 1242 1239
R16 1244 1242 1221 1216
R17 1057 1055 1051 1046
R18 1081 1078 1076 1075
R19 1054 1048 1061 1057
R20 1108 1098 1104 1100
R21 1187 1187 1178 1177
R22 1160 1159 1142 1140
R23 1046 1045
R24 1012 1011 990 989

SBAS

Total number of SNR measurements for each satellite per Signal.

SV
[1C]
(L1CA)
[5I]
(L5I)
S131 2880 2832
S133 2880 2747
S135 2880 2752
S136 2674 416
S148 2880
S158 2736

GALILEO

Total number of SNR measurements for each satellite per Signal.

SV
[1C]
(E1C)
[5Q]
(E5A(Q))
[6C]
(E6C)
[7Q]
(E5B(Q))
[8Q]
(E5(A+B)(Q))
E02 1242 1241 1251 1246 1243
E03 1445 1449 1446 1449 1452
E04 353 357 358 357 357
E05 1021 1021 1022 1021 1023
E07 1513 1520 1516 1516 1517
E08 1535 1534 1535 1533 1533
E09 505 497 502 493 511
E10 916 917 920 917 916
E11 867 863 868 864 861
E12 950 957 959 953 959
E13 1335 1331 1338 1331 1332
E14 965 964 965 965 965
E15 1314 1312 1315 1313 1315
E18 809 809 810 809 810
E19 780 776 789 781 790
E20 708
E21 1016 1021 1021 1018 1016
E24 857 853 857 855 855
E25 1017 1018 1018 1018 1017
E26 1036 1038 1038 1040 1039
E27 1307 1312 1315 1313 1314
E30 1437 1444 1444 1445 1446
E31 782 782 782 782 783
E34 1074 1076 1075 1075 1077
E36 854 847 857 855 845

BEIDOU

Total number of SNR measurements for each satellite per Signal.

SV
[1P]
(B1C(P))
[2I]
(B1I)
[5P]
(B2a(P))
[6I]
(B3I)
[7I]
(B2I)
[7D]
(B2b(D))
C06 62 111 88
C08 367 354 353
C09 235 240 239
C11 991 1011 1005
C12 984 987 987
C13 400 384 389
C14 1268 1274 1274
C16 171 123 108
C19 844 845 850 848 818
C20 655 658 657 659 651
C21 1294 1303 1301 1303 1278
C22 1027 1026 1028 1028 1020
C23 1132 1137 1133 1132 1104
C24 1224 1224 1226 1226 1210
C25 1292 1296 1302 1301 1290
C26 1078 1092 1087 1096 1048
C27 1062 1068 1072 1069 1048
C28 896 931 914 922 887
C29 1131 1139 1137 1140 1114
C30 1119 1124 1120 1124 1092
C32 765 766 766 766 763
C33 1240 1243 1244 1247 1231
C34 991 1006 993 1009 947
C35 1038 1048 1039 1049 1009
C36 722 722 722 722 721
C37 943 946 945 952 931
C38 214 270 190 257 68
C39 81 150 125 161
C40 209 229 175 228 63
C41 1157 1169 1169 1169 1118
C42 1278 1284 1290 1290 1265
C43 953 958 956 959 953
C44 899 917 901 905 891
C45 959 960 960 960 954
C46 833 837 840 839 802
C57 947 947
C58 20 20






Example 2. RTCM3 Corrections


This time lets' try to check RTCM3 corrections. For testing purposes, RTCM3 file is logged in advance from GOET00DEU0 mountpoint of euref-ip.net NTRIP Caster.


As usual, just choose the file w/ corrections in WAY interface, keep AUTO decoder mode (or select RTCM3 decoder if the file may contain mix of different GNSS formats), enter verification code and press UPLOAD button.



Once uploading and processing are completed, we may see WAY results. As usual, first general information about file, detected / used protocol and overal statistic about epochs is presented.



Next, one may find information about detected messages, number of good and bad CRC and messages description.

Messages: RTCM3

Messsage ID Good Bad Description
1077 5005 0 GPS MSM7
1087 2503 0 GLONASS MSM7
1097 2503 0 Galileo MSM7
1127 5006 0 BeiDou MSM7
1006 83 0 Stationary RTK Reference Station ARP with Antenna Height
1008 83 0 Antenna Descriptor & Serial Number
1033 83 0 Receiver and Antenna Descriptors
1019 7 0 GPS Ephemerides
1020 14 0 GLONASS Ephemerides
1042 10 0 Beidou Satellite Ephemeris Data
1045 29 0 Galileo F/NAV Satellite Ephemeris Data
1046 30 0 Galileo I/NAV Satellite Ephemeris Data



Base station coordinates (base position) and base ID is presented in the following table (RTCM3 General Statistic). This information is gathered from [1005] or [1006] RTCM3 messages. Depending on availability of [1007], [1008], [1033] messages, statistic is also augmented by information about base receiver model, FW version, serial number (SN) as well as base station antenna and its SN (if available).


RTCM3 General Statistic

Some general statistic and information about RTCM3 stream.

Parameter Value
Base Station Coordinates [1005] / [1006]
Base Station ID 0
Coordinates, m
X: 3918911.800
Y: 687523.900
Z: 4968545.600
Antenna Height, m 0.046
Reference-Station Indicator DF141
0

0 - Real, Physical Reference Station

1 - Non-Physical or Computed Reference Station (Network RTK)

Receiver Oscillator Indicator DF142
1

0 - All raw data observations may be measured at different instants

1 - All raw data observations are measured at the same instant

Quarter Cycle Indicator DF364
1

0 - Correction status unspecified

1 - PhaseRanges are corrected

2 - Phase observations are not corrected

3 – Reserved

Receiver & Antenna [1007] / [1008] / [1033]
Receiver Description
JAVAD TRE_3 DELTA
Receiver FW
4.1.06-221128
Receiver SN
0S67YR9U4JWA90QDSPVJA2QGHS
Antenna Description
LEIAR25.R4      LEIT
Antenna SN
10211013



Base station position is showed on interactive Google Maps what gives an idea where exactly the base station is located, what is the environment around.




Next, WAY provides analysis of RTCM3 stream and raise warnings in case of obvious issues are detected (like no base position, base ID change, low number of satellites or bad SNR etc). Please check the article:

§ 002. How WAY service may help in RTCM3 corrections analysis and RTK rover troubleshooting?

It provides many practical examples of affected RTCM3 stream which may prevent RTK rover from being FIXED. WAY may help to identify these problems.


But let's come back to RTCM3 example from Gottingen. Here all is fine, WAY didn't detect any obvious issues in RTCM3 stream. All is GREEN.


WAY RTCM3 Simple analysis


+3.0


Good! Base coordinates messages [1005] or [1006] are available

RTK base position is VITAL information required for RTK rover operation. W/o it no precise positioning is possible.


+1.0


Good! Antenna Descriptor messages ([1007] or [1008] or [1033]) are available and Antenna type is provided.

RTK rover may have performance issues especially on long base lines if RTK Base antenna type is unknown. Some RTK rovers may even refuse to compose RTK positions at all w/o knowledge of Base Antenna type.


+1.0


Good! Receiver Descriptor messages [1033] is available and Receiver type is provided

RTK rover may have performance issues especially on long base lines if RTK Receiver type is unknown.

Information about Base receiver type may be used by RTK rover for so called inter-receiver GLONASS biases table. These pre-calibrated phase biases being used may speed up GLONASS ambiguity resolution if base and rover are of different manufactures.

Some RTK rovers may even refuse to compose RTK positions at all w/o knowledge of Base Receiver type.


+3.0


Good! Mean number (45.17) of available SVs is OK

Lack of SVs data coming from RTK base directly affects RTK rover performance (TTFF) especially on long base lines or under challenging environment.


+1.0


Good! Max GPS L1CA SNR (51 dbHz) on base is fine.

Low SNR on base may point on issues w/ antenna-feeder tract, wrong system installation, interference etc. All of it may directly affect RTK rover performance resulted in long TTFF, outliers and wrong fixes.


+1.0


Good! Mean GPS L1CA SNR (44.76 dbHz) on base is fine.

Low SNR on base may point on issues w/ antenna-feeder tract, wrong system installation, interference etc. All of it may directly affect RTK rover performance resulted in long TTFF, outliers and wrong fixes.


+0.5


Good! There are no messages w/ bad CRC (0.0000 %). Data link is perfect.

Corrupted messages deprive RTK engine of corrections in time what may degrade RTK rover performance.







Next, we may see statistic of number of tracked GNSS detected in observables RTCM3 messages.


Min / Mean / Max SVs Tracked

Min, mean and max number of tracked SVs per GNSS.

SVs Tracked
GNSS Min Mean Max
GPS 1 11.51 12
GLONASS 9 9.77 10
GALILEO 7 8.57 9
BEIDOU 15 15.32 17




Quite important statistic as well - maximum and average SNR per each detected GNSS and signal. Also gives information about actually available signals types. Please be aware that these tables may not appear if corrections do not include SNR (for instance RTCM3 messages of MSM3 group).


Max / Mean SNR

Max and mean SNR over all SVs of concrete GNSS and signal.

GNSS Signal Max SNR, dbHz Mean SNR, dbHz
GPS L1CA 51.00 44.76
GPS L1C(D+P) 51.00 49.40
GPS L1P 53.00 39.32
GPS L2P 53.00 39.32
GPS L2C(L+M) 53.00 44.68
GPS L5(I+Q) 58.00 51.93
GLONASS L1CA 56.00 47.83
GLONASS L1P 56.00 47.61
GLONASS L2CA 51.00 44.17
GLONASS L2P 50.00 43.50
GALILEO E1(B+C) 52.00 46.70
GALILEO E5A(I+Q) 56.00 47.97
GALILEO E6(B+C) 53.00 45.70
GALILEO E5B(I+Q) 57.00 48.40
GALILEO E5(A+B)(I+Q) 59.00 51.05
BEIDOU B1C(D+P) 51.00 45.34
BEIDOU B1I 52.00 44.37
BEIDOU B2a(D+P) 57.00 48.59
BEIDOU B3I 53.00 44.68
BEIDOU B2I 53.00 42.30





SNR (or Code) measurements counters - allow to get idea what concrete satellites are provided by RTK Base, what signals and how many such observables. May be RTK rover can't get FIX because RTK Base doesn't track L2 frequency? The table perfectly shed light on such hypothesis. This time all is fine.


GPS

Total number of SNR measurements for each satellite per Signal.

SV
[1C]
(L1CA)
[1X]
(L1C(D+P))
[1W]
(L1P)
[2W]
(L2P)
[2X]
(L2C(L+M))
[5X]
(L5(I+Q))
G03 1356 1374 1374 1395 1399
G04 2501 2501 2501 2501 2501 2501
G05 2386 2382 2382 2386
G06 2501 2501 2501 2501 2501
G07 2501 2501 2501 2501
G09 2501 2501 2501 2501 2501
G11 2501 2501 2501 2501 2501 2501
G16 2501 2501 2501
G20 2501 2501 2501
G26 2501 2436 2436 2501 2501
G29 2502 2502 2502 2502
G30 2501 2501 2501 2501 2501

GLONASS

Total number of SNR measurements for each satellite per Signal.

SV
[1C]
(L1CA)
[1P]
(L1P)
[2C]
(L2CA)
[2P]
(L2P)
R01 2502 2502 2502 2495
R02 2502 2502 2502 2502
R03 2502 2502 2502 2502
R04 1981 1979 1974 1915
R11 2502 2502 2502 2502
R12 2502 2502 2502 2502
R13 2502 2502 2502 2502
R17 2453 2453 2453 2394
R18 2502 2502 2502 2502
R19 2502 2502 2502 2502

GALILEO

Total number of SNR measurements for each satellite per Signal.

SV
[1X]
(E1(B+C))
[5X]
(E5A(I+Q))
[6X]
(E6(B+C))
[7X]
(E5B(I+Q))
[8X]
(E5(A+B)(I+Q))
E03 784 782 782 782 776
E04 2502 2502 2501 2502 2502
E05 2502 2502 2502 2502 2502
E09 2502 2502 2502 2502 2502
E11 860 860 848 843 851
E15 2502 2502 2501 2502 2502
E21 1538 1538 1538 1538 1538
E24 757 752 753 753 740
E31 2502 2502 2502 2502 2502
E34 2502 2502 2502 2502 2502
E36 2502 2502 2502 2502 2502

BEIDOU

Total number of SNR measurements for each satellite per Signal.

SV
[1X]
(B1C(D+P))
[2I]
(B1I)
[5X]
(B2a(D+P))
[6I]
(B3I)
[7I]
(B2I)
C05 2502 2502 2502
C06 2502 2502 2502
C07 45 45 81
C09 2502 2502 2502
C14 2502 2502 2502
C16 1802 1829 1893
C24 2502 2502 2502 2502
C25 2502 2502 2502 2502
C26 2502 2502 2502 2502
C27 2502 2502 2502 2502
C28 2502 2502 2502 2502
C30 2502 2502 2502 2502
C32 1304 1317 1326 1317
C33 2502 2502 2502 2502
C41 2502 2502 2502 2502
C42 2502 2502 2502 2502
C60 2502 1482





Example 3. Septentrio SBF


WAY service is also capable of reading and decoding binary Septentrio SBF format. Let's demonstrate it on some concrete example. SBF files may be taken from GAGE UNAVCO server.

For instance, it could be the file neah0010.23_a.sbf (see illustration below).



Please, download the file from UNAVCO server and than, as usual, upload the file into WAY. Wait till processing is completed.

General info section gives us an idea that: it is indeed binary SBF file w/ data update rate of 15 sec. In total, we have about 10.5 h of data for analysis.


General Info

Parameter Value
File name neah0010.23_a.sbf
File Size 13.723 MB (14390032 bytes)
Input decoder AUTO
Used decoder SBF
Epochs
Rate 15 sec
Total 2526
Time issues 0 (0.000% )
Missed 0 (0.000% )
Time start 2023.01.01 00:00:0.00
Time Stop 2023.01.01 10:31:15.00


List of detected SBF blocks (messages) is presented below. All messages are good, no bad CRC detected.

Messages: Septentrio SBF

Block ID Block Name Good Bad Description
4027 MeasEpoch 2528 0 Measurement set of one epoch
4007 PVTGeodetic 2527 0 GNSS position, velocity, and time in geodetic coordinates
4015 Commands 1 0 Commands entered by the user
5902 ReceiverSetup 1 0 General information about the receiver installation
5891 GPSNav 93 0 GPS ephemeris and clock
5893 GPSIon 831 0 Ionosphere data from the GPS subframe
4002 GALNav 770 0 Galileo ephemeris, clock, healthand BGD
4030 GALIon 1 0 NeQuick Ionosphere model parameters
4004 GLONav 186 0 GLONASS ephemeris and clock
4081 BDSNav 120 0 BeiDou ephemeris and clock
4120 BDSIon 1 0 BeiDou Ionospheric delay model parameters
5896 GEONav 1335 0 MT09 : SBAS navigation message
4031 GALUtc 3262 0 GST - UTC data
4032 GALGstGps 2008 0 GST - GPS data
5894 GPSUtc 50 0 GPS - UTC data from GPS subframe
4095 QZSNav 6 0 QZSS ephemeris and clock



Interesting, looks like the receiver is running in PPP (Precise Point Positioning) mode.


Position Types

Position type
PPP_FLOAT 2526 (100.000%)



Horizontal and vertical precision definitely confirms it. Percentile 99.9% is less than 7 cm in horizontal (means that 99.9% yields within the file have horizontal positioning precision error no more than 6.78 cm).


Horizontal Precision

Horizontal positions precision against average coordinates. Has sense only for static receiver.

Metric Precision, m
Sample size 2526
RMS 0.038029
50 % 0.035710
68 % 0.042167
90 % 0.053900
95 % 0.057480
99 % 0.061923
99.9 % 0.067844

Vertical Precision

Vertical positions precision against average coordinates. Has sense only for static receiver.

Metric Precision, m
Sample size 2526
RMS 0.068437
50 % 0.053406
68 % 0.075836
90 % 0.114380
95 % 0.126434
99 % 0.135925
99.9 % 0.144714



Average coordinates (over all positions within the file) are the following:


Average Coordinates

Average Coordinates over all positions withing the file.

Average Coordinates
Lat, deg 48.297878411009
Lon, deg -124.6249094556
Alt, m 459.939393
X, m -2415625.703464
Y, m -3498394.146689
Z, m 4739316.836467



Thanks to position on GMap, we may see in details where the receiver is located. The receiver is installed in quite forestry place. Would be interesting to check Multipath environment (MP1 / MP2 combination) as well as satellite visibility as function of elevation. KernelSAT is planning to add in coming future TEQCMate online service specifically aimed to perform base station measurements quality assesment (similar to what UNAVCO teqc utility does).




Next, we may observe standard measurements statistic, as number of tracked satellites per each GNSS:

Min / Mean / Max SVs Tracked

Min, mean and max number of tracked SVs per GNSS.

SVs Tracked
GNSS Min Mean Max
GPS 6 9.56 12
GLONASS 6 7.59 10
SBAS 3 3.00 3
QZSS 0 0.52 1
GALILEO 6 7.88 10
BEIDOU 6 8.51 11




As well as detailed statistic per each GNSS, satellite and signal. For instance, one may see that QZSS L6 signal is tracked (MADOCA or CLAS PPP)?

Max / Mean SNR

Max and mean SNR over all SVs of concrete GNSS and signal.

GNSS Signal Max SNR, dbHz Mean SNR, dbHz
GPS L1CA 52.00 39.33
GPS L1C(P) 40.50 35.18
GPS L1P 48.50 32.39
GPS L2C(L) 42.00 31.22
GPS L2P 48.50 32.39
GPS L5Q 56.00 43.18
GLONASS L1CA 52.50 36.38
GLONASS L1P 53.25 35.33
GLONASS L2CA 51.00 37.44
GLONASS L2P 46.00 34.26
SBAS L1CA 45.50 43.71
SBAS L5I 30.25 28.89
QZSS L1CA 32.25 25.63
QZSS L1C(P) 30.00 26.48
QZSS L2C(L) 30.00 25.49
QZSS L5Q 42.00 38.42
QZSS L6P 30.50 25.79
GALILEO E1C 50.00 32.63
GALILEO E5A(Q) 52.00 38.47
GALILEO E6C 48.75 34.33
GALILEO E5B(Q) 52.75 35.90
GALILEO E5(A+B)(Q) 48.75 37.39
BEIDOU B1C(P) 41.00 31.92
BEIDOU B1I 52.75 35.74
BEIDOU B2a(P) 51.25 35.93
BEIDOU B3I 54.25 37.93
BEIDOU B2I 52.50 37.29



Summary


The article presented several examples of how to quikly check GNSS data and do minimal assesment and analysis using KernelSAT WAY online service. WAY supports many different GNSS formats and protocols - not all of them were presented in this article. Please reffer to WAY Home Page for up-to-date status of supported formats, protocols and messages.



KernelSAT
2023-Aug-30




© 2023-2024 KernelSAT